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In this paper we study block diagonal preconditioners for mixed systems derived from the Dirichlet prob-
lems for second order elliptic equations. The main purpose is to discuss how an embedding of the original
computational domain into a simpler extended domain can be utilized in this case. We show that a family of
uniform preconditioners for the corresponding problem on the extended, or fictitious, domain leads directly
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1. Introduction

We consider mixed finite element approximations for second order elliptic equations, with
Dirichlet boundary conditions, of the form

−div(a gradp) = f in �
p = g on ∂ �

(1.1)
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Here� ⊂ R2 is a bounded polygonal domain and∂� is the boundary. The coefficient
matrixa is assumed to be bounded and uniformly positive definite on�. The main purpose
of this paper is to discuss how to construct preconditioners for the corresponding discrete
linear systems where an embedding of the domain� into an extended, or fictitious, more
regular domain�e is utilized.

If the boundary value problem (1.1) is discretized by a standard conforming finite element
method a symmetric and positive definite system of the form

Ahph = fh

is obtained. Here,h > 0 is a small parameter indicating the mesh size. However, since the
condition number of the coefficient operatorAh increases with decreasing values ofh, the
behaviour of iterative methods depends on the construction of effective preconditionersBh.

In a domain embedding approach we utilize an embedding of the original domain�

into an extended domain�e to construct a proper preconditionerBh. This is in contrast to
domain decomposition methods where the domain is split into a number of subdomains. In
practical applications the geometry of�e will be simpler, or more regular, than the geometry
of �. Hence, it is reasonable to assume that corresponding preconditioners on the domain
�e, for example, constructed by multilevel methods, are more easily obtained. In certain
applications, it can even be possible to apply a fast solver on the extended domain. For
early papers discussing domain embedding as a tool for solving discrete systems we refer
to Astrakhantsev [4] and Buzbeeet al. [10]. For some more recent developments, cf. for
example Proskurowski and Vassilevski [27,28].

For problems of the form (1.1), but with the Dirichlet boundary conditions replaced by
natural boundary conditions, application of domain embedding is rather straightforward. In
this case we can apply preconditionersBh of the form

Bh = RhBe,hEh (1.2)

whereBe,h is a corresponding preconditioner with respect to the domain�e,Eh is essentially
the extension by zero operator andRh is the operator defined by restricting functions to�.
Under proper conditions onBe,h the preconditionerBh will be a uniform preconditioner
for Ah, i.e., the spectral condition number ofBhAh is independent of the mesh parameter
h (cf. for example, Astrakhantsev [4] or Marchuk, Kuznetsov and Matsokin [23]).

For Dirichlet (or essential) boundary conditions the situation is not as straightforward.
One way to remove the essential boundary condition is to use the Lagrange multiplier
method for the Dirichlet problem introduced by Babuška [5]. The resulting saddle point
system can then be preconditioned by a block diagonal operator, where one of the blocks
will correspond to a preconditioner for the Neumann problem. Hence, this part of the oper-
ator can be constructed by domain embedding as indicated above. The second block of the
preconditioner is a boundary operator defined on the interface between� and�+ ≡ �e\�.
For a general description and various applications of Lagrange multipliers and domain em-
bedding for the Dirichlet problem we refer to Dinhet al.[13] and Rossi [30]. An alternative
approach, utilizing an approximate harmonic extension, is suggested by Nepomnyaschikh
[24] and studied in detail in [25,26], while Finogenov and Kuznetsov [14] study a two–stage
method for the Dirichlet problem. The latter approach utilizes inexact but sufficiently accu-
rate solutions of problems on the extended domain�e. The problem of inexact solutions on
the extended domain was also treated in Börgers and Widlund [6]. Another version of the
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domain embedding method in the framework of [24], based on recently proposed bounded

extension operators exploitingH
1
2 –stable wavelet–like hierarchical decomposition of con-

forming finite element spaces, was presented in Vassilevski [33].
In the present paper we shall consider the discrete systems obtained from the mixed

finite element method for the problem (1.1). This discretization procedure will lead to an
indefinite saddle point system. Also, the Dirichlet boundary conditions are natural boundary
conditions for the mixed weak formulation of the problem (1.1). Therefore, as we shall see
below, domain embedding preconditioners for these systems can be constructed rather
naturally of the form (1.2).

In Section 2 we will give a brief review of the mixed finite element method for elliptic
boundary value problems of the form (1.1), while preconditioning of saddle point problems
is discussed in Section 3. In particular, we will describe the tight connection between pre-
conditioners for the indefinite mixed system and preconditioners for the positive definite
operator derived from the inner product in the spaceH(div). Domain embedding precondi-
tioners for this positive definite operator will be discussed in Section 4. A key tool in the
analysis is the construction of an extension operator which is bounded inH(div). In Section
5 we show how theH(div) preconditioner proposed in Section 4 can be combined with
the auxiliary space technique (cf. Xu [37]), to construct preconditioners for the systems
obtained from the non-conforming Crouzeix–Raviart method by viewing this method as
a non-conforming mixed method. Finally, some numerical experiments are presented in
Section 6.

We adopt, throughout this paper the following notation: functions and spaces in bold
face will denote vector fields and vector valued function spaces, respectively. Similarly,
operators in bold face (such asgrad or curl ) will have actions in vector-valued function
spaces.

2. Preliminaries

The inner product inL2(�) will be denoted(·, ·) and the same notation will be used to
denote the corresponding inner product for vector-valued functions. The Sobolev space of
functions with derivatives of order less than or equal tom inL2(�)will be denotedHm(�),
and the associated norm by|| · ||m. Furthermore,H(div;�) is the space consisting of square
integrable 2–vectorfields with square integrable divergence. The inner product inH(div;
�) is given by

3(u,y) = (u,y)+ (div u, div y) (2.1)

and we let
|| y ||div = 3(y,y)1/2

For domainsK ⊂ R2, different from�, we will in general use an extra subscript to denote
norms with respect to the domainK, for example,|| · ||0,K and|| · ||div,K will be the norms

in L2(K) andH(div;K), respectively.
The mixed weak formulation of the problem (1.1) is given by:

Find (u, p) ∈ H(div;�)× L2(�) such that

(a−1 u,y)+ (p, div y) = G(y), for all y ∈ H(div;�)
(div u, q) = F(q), for all q ∈ L2(�)

(2.2)
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Hereu is the auxiliary variableagradp. The functionalsF andG are given by

F(q) = −
∫
�

f q dx and G(y) =
∫
∂�

g y · n ds,

wheres denotes the arc length along∂� andn is the exterior unit normal vector on∂�.
A key observation for the discussion in this paper is the well known fact that the Dirichlet
boundary conditions are natural boundary conditions in the mixed weak formulation.

The system (2.2) can alternatively be written in operator form as

!

(
u
p

)
=
(

G
F

)

where the coefficient operator,!, is given by

! =
(
a−1 I −grad
div 0

)
(2.3)

The operator! can be seen to be an isomorphism mappingH(div;�)×L2(�) into itsL2–
dualH(div;�)∗ × L2(�). A corresponding mapping property for the discrete coefficient
operator will be the main tool in deriving the structure of effective preconditioners for the
corresponding discrete systems.

The mixed finite element method is derived from the weak formulation (2.2). Let
{(Vh,Wh)}h∈(0,1] be pairs of finite element spaces, derived from a family of triangulations
{7h}h∈(0,1], such thatVh⊂ H(div;�) andWh ⊂ L2(�)whereh denotes the characteristic
mesh size. The discrete weak formulation is to find(uh, ph) ∈Vh ×Wh such that

(a−1 uh,y)+ (ph, div y) = G(y), for all y ∈ Vh,
(div uh, q) = F(q), for all q ∈ Wh.

(2.4)

This system can similarly be written in the operator form

!h

(
uh
ph

)
=
(

Gh
Fh

)

where the operator!h : Vh ×Wh 7→Vh ×Wh has the block structure

!h =
(

Ah B∗
h

Bh 0

)
(2.5)

Here the operatorsAh : Vh 7→ Vh andBh : Vh 7→ Wh are defined implicitly by the system
(2.4), i.e.,

(Ahu,y) = (a−1 u,y) for all u,y ∈ Vh,

and
(Bh u, q) = (div u, q) for all u ∈ Vh, q ∈ Wh.

Furthermore,B∗
h: Wh 7→Vh is theL2–adjoint ofBh.

The family of spaces{(Vh,Wh)} are assumed to satisfy a Babuška–Brezzi condition of
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the form

sup
y∈Vh

(q, div y)

|| y ||div
≥ α||q||0 for all q ∈ Wh, (2.6)

whereα > 0 is independent ofh. In addition, we assume that

div(Vh) ⊂ Wh. (2.7)

It is well known that the two conditions (2.6) and (2.7) imply the stability of the mixed
finite element method for second order elliptic problems of the form (1.1). More precisely,
letXh =Vh ×Wh with norm

||(y, q)||2Xh = || y ||2div + ||q||20,

and letX∗
h be equal toXh as a set, but with the corresponding dual norm, i.e.,

||(y, q)||2X∗
h

= || y ||2∗ + ||q||20,

where

|| y ||∗ = sup
z∈Vh

(y, z)
|| z ||div

.

The conditions (2.6) and (2.7) imply that the operator norms

||!h||+(Xh,X∗
h
) and ||!−1

h ||+(X∗
h
,Xh) are bounded uniformly inh. (2.8)

This qualitative description of the system (2.4) is the basic information needed in order to
construct the structure of possible preconditioners for the system.

3. Preconditioning mixed systems

Consider the discrete system (2.4) with coefficient operator!h given by (2.5). Our aim is
to solve this system by an iterative method. However, since!h arises as a discretization
of the unbounded operator (2.3), a preconditioning of the system is necessary in order to
obtain an effective iteration.

The coefficient operator!h of the discrete mixed system isL2–symmetric, but indefinite.
For a short review of various iterative methods proposed for saddle point problems we refer
to Section 7 of [3] and references given there. In the numerical experiments, presented in
Section 6, we will use the minimum residual method. For discussions on the minimum
residual method and block diagonal preconditioners for saddle point problems we refer to
[19,20,21,31,32,36] and Chapter 9 [16]. The derivation given below of the desired structure
of the preconditioner for the saddle point operator is closely related to similar discussions
given in [2] and [3], see also [34].

A preconditioner for the system (2.4) is a positive definite operator@h : Xh 7→ Xh.
The basic properties required for an effective preconditioner@h is that the action of@h

can be efficiently computed and that the spectral condition number of the operator@h!h,
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κ(@h!h), is bounded uniformly inh. Hereκ(@h!h) is given by

κ(@h!h) = sup|λ|
inf |λ|

where the supremum and infimum is taken over the spectrum of@h!h. We observe that
@h!h is symmetric with respect to the innerproduct(@−1

h ·, ·). Furthermore, this operator
is the coefficient operator of the preconditioned system

@h!h

(
uh
ph

)
= @h

(
Gh
Fh

)

If the condition numberκ(@h!h) is bounded, uniformly inh, then an iterative method like
the minimum residual method, or another method with similar properties, will converge
with a rate independent ofh. More precisely, the number of iterations needed to achieve a
given factor of reduction of the error in a proper norm is bounded independently ofh.

As a consequence of (2.8) the desired bound on the condition numberκ(@h!h)will hold
if

||@h||+(X∗
h
,Xh) and ||@−1

h ||+(Xh,X∗
h
) are bounded uniformly inh. (3.1)

Hence, we conclude that a uniform preconditioner@h for the mixed system 2.4) is a positive
definite operator@h : Xh 7→ Xh which satisfies the bounds (3.1) and which is easy to
evaluate.

Let Lh:Vh 7→Vh be defined by (cf. (2.1))

3(u,y) = (Lhu,y) forall u,y ∈ Vh .

It is straightforward to see thatLh isL2–symmetric and positive definite. The operatorLh

should be thought of as an approximation of the operatorI −grad div in the sense that the
equationLhuh = fh approximates problems of the form

u −grad div u = f, (3.2)

with the natural boundary condition

div u = 0 on∂�. (3.3)

Note that the operatorI −grad div is not an elliptic operator. In fact, when restricted to
gradient fields this operator acts like a second order elliptic operator, while it coincides with
the identity operator on curl fields.

The significance of the operatorLh is that the bounds (2.8) state that the operator!h

has the same mapping properties as the diagonal operator(
Lh 0
0 I

)

Furthermore, the simplest choice of an operator which satisfies the condition (3.1) is a block
diagonal operator of the form

@h =
(

Qh 0
0 I

)
(3.4)
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whereQh is a uniform preconditioner forLh. The operatorQh should therefore be spec-
trally equivalent toL−1

h , i.e., there are positive constantsc1 andc2 independent ofh such
that

c13(y,y) ≤ 3(QhLhy,y) ≤ c23(y,y). (3.5)

Hence, the construction of a preconditioner@h for the coefficient operator!h of (2.4) has
been reduced to the construction of a preconditioner for the positive definite operatorLh.

The construction of effective preconditioners for theLh has been discussed by Cai,
Goldstein and Pasciak [11], Vassilevski and Wang [35] and Arnold, Falk and Winther [3]
in two space dimensions and by Hiptmair [17] and Hiptmair and Tosseli [18] in three
dimensions. In particular, it is established in [3] that, ifVh is a Raviart–Thomas space,
a standard multigrid V-cycle operator, utilizing a proper smoothing operator, will in fact
be a uniform preconditioner forLh. In the analysis below we will discuss the possibility
of using a preconditioner constructed with respect to an extended domain to construct a
uniform preconditioner for the operatorLh.

4. Domain embedding

If the geometry of the domain� is, in some sense, irregular then for computational reasons it
is frequently desirable to embed� into a more regular extended domain�e. The purpose of
this section is to discuss the use of such an extended domain to construct the preconditioner
Qh for Lh. We emphasize that even if we are approximating a Dirichlet problem of the
form (1.1), the boundary condition given by (3.3) is a natural boundary condition for the
problem (3.2). Therefore, the domain embedding approach is well suited for the operator
Lh.

In the first subsection, Section 4.1, we present the setting of domain embedding and
prove some auxiliary results, the main one being an extension result of normal trace data
into the interior of the neighbouring subdomain�+. Note, that unlike the domain embedding
approach studied, e.g., in Nepomnyaschikh [24], we do not need this extension mapping
explicitly in the algorithm implementing the actions of the preconditioner. In subsection
4.2 we give the construction of the domain embedding preconditioner and study its spectral
equivalence properties.

4.1. An extension result forH(div)–functions

Let �e be a fixed extended domain, i.e.,� ⊂ �e. The part of∂� which is contained
in the interior of�e will be denoted0. For simplicity, we assume that0 is connected.
Furthermore, we let�+ = �e \ (� ∪ 0). Hence,

�e = � ∪ 0 ∪�+

cf. Figure 1. The inner products inL2(�e) andH(div, �e) will be denoted(·, ·)e and
3e(·, ·), respectively.

We will useH 1
0 (0) to denote the space

H 1
0 (0) = {µ|0 : µ ∈ H 1(∂�), µ ≡ 0 on∂� \ 0}
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�+

�

0

Figure 1. The domain�e = � ∪ 0 ∪�+

andH 1/2
0 (0) will be the interpolation space half way betweenL2(0) andH 1

0 (0) (This

space is frequently referred to asH 1/2
0,0 (0), cf. [22].) If K ⊂ ∂�e ∪ 0 we let〈·, ·〉K denote

the inner product ofL2(K) and| · |m,K the norm inHm(K). The dual space ofH
1
2

0 (0)with
respect to the inner product〈·, ·〉0 of L2(0) is denotedH−1/2(0).

As above letn = (n1, n2) denote the outward unit normal on∂�. It is well known (cf.
e.g., [15]) that the trace operator

y−→ (y · n)|0
is a bounded map fromH(div;�) ontoH−1/2(0). More precisely, there exists a positive
constantc, only depending on� and0, such that

| y · n |−1/2,0 ≤ c|| y ||div forall y∈ H(div;�) (4.1)

We will assume thatVh can be embedded into a larger finite element space,Vh (�e) ⊂
H(div;�e). Hence, the spaceVh is obtained by restricting elements ofVh (�e) to�. We
recall that ify ∈ H(div;�e) then the normal component ofy is required to be continuous
over the interface0 in the sense that

(y · n)|0+ = (y · n)|0−

i.e., the normal components taken from the outside or the inside of� are the same. The
subspace of functions inVh (�e) with support in the closure of�+ will be denotedV0,h,
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i.e.,
V0,h= {y∈ Vh (�e) :y≡ 0 on�}

We observe that ify∈V0,h then (y · n)|0 = 0. The orthogonal complement ofV0,h
in Vh (�e) with respect to the inner product3e(·, ·) will be denotedV⊥

0,h. Hence,V⊥
0,h

consists of all functions inVh (�e) which are ‘discreteL–harmonic’ on�+.
We shall throughout this section assume that the spaces{Vh (�e)} are Raviart–Thomas

spaces constructed from a quasi-uniform triangulation{7e,h} of �e. Hence, for a non-
negative integerr,

Vh (�e) = {y∈ H(div;�e) :y∈ (Pr(T ))2 + (x, y)Pr(T ) for all T ∈ 7e,h}

HerePr(T ) denotes the space of polynomials of degree at mostr on T . The associated
spacesWh andWh(�e) consist of discontinuous piecewise polynomials of degreer with
respect to the triangulations7h and7e,h, respectively. It is well known that the stability
condition (2.6) holds for the pairs of spaces{(Vh,Wh)} (cf. [29]).

Let alsoZh(�e) be the usual space of continuous piecewise polynomials of degree at
mostr + 1, i.e.,

Zh(�e) = {z ∈ H 1(�e) : z|T ∈ Pr+1(T ) for all T ∈ 7e,h}

and letcurl be the differential operator

curl =
(

− ∂
∂y
∂
∂x

)

It is easy to check that
curl (Zh(�e)) ⊂Vh (�e)

In fact, curl (Zh(�e)) consists of piecewise polynomials of degree at mostr, and
curl (Zh(�e)) is exactly the subspace of divergence free vector fields inVh (�e) (cf.
[9]).

Finally, we letSh(0) be the trace space given by

Sh(0) = {µ : µ = (y · n)|0 for y∈ Vh}

Hence,Sh(0) is a space of discontinuous piecewise polynomials on0. Similarly, we let

Sh(∂�+) = {µ : µ = (y · n)|∂�+ for y∈ Vh (�e)}

such thatSh(0) ⊂ Sh(∂�+). In the analysis below we shall utilize the following extension
result for boundary functions.

Lemma 4.1. There exists a bounded extension operatorE∂ : H−1/2(0) 7→ H−1/2(∂�+)
such that ∫

∂�+
(E∂g)(s) ds = 0 forallg ∈ H−1/2(0)

Proof
Let γ1 > 0 be the length of0 andγ2 > 0 the length of∂�+ \ 0 such that functions on
∂�+ can be identified with (periodic) functions on(−γ1, γ2). For eachg ∈ H−1/2(0) =
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H−1/2((−γ1, 0)) defineE∂g as the odd extension ofg given by

E∂g =
{
g(s) for s ∈ (−γ1, 0)
− γ1
γ2
g(− γ1

γ2
s) for s ∈ (0, γ2)

(4.2)

It is straightforward to check that theL2–dual operatorE∗
∂ is given by

(E∗
∂ φ)(s) = φ(s)− φ(−γ2

γ1
s)

for s ∈ (−γ1, 0). Furthermore, the operatorE∗
∂ is easily seen to satisfy

E∗
∂ ∈ +(L2(∂�+), L2(0)) ∩ +(H 1(∂�+),H 1

0 (0))

By interpolation we therefore can conclude that

E∗
∂ ∈ +(H 1/2(∂�+),H

1/2
0 (0))

and by duality this implies

E∂ ∈ +(H−1/2(0),H−1/2(∂�+))

Finally, the mean value property forE∂g follows from the fact thatE∗
∂ φ ≡ 0 for any

constant functionφ.

Let Qh : L2(∂�+) 7→ Sh(∂�+) be theL2–projection. Since the spaceSh(∂�+) in
general will contain piecewise constants the operatorQh admits an estimate of the form

|(I −Qh)φ|0,∂�+ ≤ chδ|φ|δ,∂�+ for 0 ≤ δ ≤ 1, (4.3)

wherec is independent ofh. We now have the following discrete analogue of Lemma 4.1

Lemma 4.2. For eachg ∈ Sh(0) there exists an extensioñg ∈ Sh(∂�+) such that∫
∂�+
g̃(s) ds = 0 and | g̃ |−1/2,∂�+≤ c | g |−1/2,0

where the constantc is independent ofg andh.

Proof
From Lemma 4.1 it seems that the obvious choice forg̃ is E∂g. However, in general
E∂g /∈ Sh(∂�+) for g ∈ Sh(0). But we observe that the definition ofE∂ implies thatE∂g
is a piecewise polynomial with respect to a partition of∂�+ implicitly defined by (4.2).
Therefore, the functionE∂g will satisfy an inverse estimate of the form

|E∂g|0,∂�+ ≤ ch−1/2|E∂g|−1/2,∂�+ ≤ ch−1/2|g|−1/2,0 (4.4)

where the final estimate follows from Lemma 4.1
Define insteadg̃ = QhE∂g. SinceSh(∂�+) consists of discontinuous functions the
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operatorQh is local and therefore

g = E∂g|0 = g̃|0
Furthermore, since the constant functions are elements ofSh(∂�+), the mean value property
for g̃ is inherited from the mean value property ofE∂g. Finally, if φ ∈ H 1/2(∂�+)we have

〈g̃, φ〉∂�+ = 〈E∂g, φ〉∂�+ + 〈E∂g, (Qh − I )φ〉∂�+
≤ |E∂g|−1/2,∂�+|φ|1/2,∂�+ + |E∂g|0,∂�+|(I −Qh)φ|0,∂�+
≤ c|g|−1/2,0|φ|1/2,∂�+ ,

where we have used the estimates (4.3) and (4.4) in the final step. Hence, it follows from
the definition of|g̃|−1/2,∂�+ that

|g̃|−1/2,∂�+ = sup
φ∈H1/2(∂�+)

〈g̃, φ〉∂�+
|φ|1/2,∂�+

≤ c|g|−1/2,0.

Let
Zh(�+) = {z|�+ : z ∈ Zh(�e)}.

Lemma 4.3. (Discrete divergence free extension) Letg ∈ Sh(0). There exists ay ∈
curl (Zh(�+)) such that

(y · n)|0 = g and || y ||div,�+ = || y ||0,�+ ≤ c|g|−1/2,0

wherec is independent ofg andh.

Proof
For a giveng ∈ Sh(0) let g̃ ∈ Sh(∂�+) be as in Lemma 4.2 Sincẽg has mean value zero,
there exists a uniqueφ ∈ H 1/2(∂�+) such that

φt = g̃, and
∫
∂�+
φ ds = 0

Here and in what follows,φt will denote the tangential derivative ofφ, where the unit
tangent vectort is defined such thatt = (n2,−n1) on0. Furthermore,

|φ|1/2,∂�+ ≤ c|g̃|−1/2,∂�+ ≤ c|g|−1/2,0 (4.5)

Also, observe thatφ corresponds to a trace on∂�+ of a function inZh(�e).
Letψ be the unique element inZh(�+) such thatψ = φ on ∂�+ and∫

�+
grad ψ · grad z dx = 0

for all z ∈ Zh(�+) such thatz|∂�+ = 0. Hence,ψ is a ‘discrete harmonic’ function on�+
and therefore (cf. e.g., [7])

||ψ ||1,�+ ≤ c|ψ |1/2,∂�+ = c|φ|1/2,∂�+ (4.6)
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Define nowy = curl ψ . Then

(y · n)|0 = (ψt )|0 = (φt )|0 = g

Furthermore, since
|| y ||div,�+ = || y ||0,�+ ≤ ||ψ ||1,�+

the desired estimate follows from (4.5) and (4.6).

Lemma 4.4. There is a constantc, independent ofh, such that

|| u ||div,�+ ≤ c| u · n |−1/2,0 for all u ∈ V⊥
0,h

Proof
Let u ∈ V⊥

0,h and letg = (u · n)|0 ∈ Sh(0). Sinceu ∈ V⊥
0,h it follows that this function

minimizes|| y ||div,�+ over all elements inVh (�e) which satisfy the condition(y · n)
|0 = g. Therefore, it is enough to establish the existence of ay ∈ Vh (�+) = Vh (�e)|�+
such that(y · n)|0 = g and

|| y ||div,�+ ≤ c|g|−1/2,0 (4.7)

However, the existence of such a functiony follows from Lemma 4.3

We observe that, together with the trace inequality (4.1), this lemma implies an inequality
of the form

|| y ||div,�+ ≤ c|| y ||div forall y ∈ V⊥
0,h

Hence, since|| y ||2div,�e
= || y ||2div = || y ||2div,�+ we obtain

|| y ||div,�e ≤ β|| y ||div forall y ∈ V⊥
0,h (4.8)

where the positive constantβ is independent ofh. Also, for eachy ∈ Vh there exists a
unique extensioñy ∈ V⊥

0,h such thatỹ =y on�. In fact,ỹ|�+ is defined by

3e(ỹ, z) = 0 for all z ∈ V0,h
(ỹ· n)|0+ = (y · n)|0−

(4.9)

Hence, ifỹ ∈V⊥
0,h is defined fromy∈Vh by (4.9) then (4.8) implies that

||ỹ||div,�e ≤ β|| y ||div (4.10)

4.2. The domain embedding preconditioner

In this subsection we present the construction of the domain embedding preconditioner for
the operator of main interest,3h, and analyse its properties.

Let Rh:Vh (�e) 7→Vh be the operator defined by restricting elements ofVh (�e) to�
and letEh:Vh 7→Vh (�e) be the adjoint operator, i.e.,

(Ehu,y)e = (u,Rhy) for all u ∈ Vh,y∈Vh (�e)
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Alternatively,Ehu can be characterized as theL2–projection intoVh (�e) of u0, where
u0 ∈ L2(�e) denotes the extension ofu by zero outside�e.

The analogue of the operatorLh with respect to the extended spaceVh (�e) will be
denotedLe,h, i.e.,Le,h:Vh (�e) 7→Vh (�e) is defined by

(Le,hu,y)e = 3e(u,y) for all u,y ∈ Vh (�e)

We now defineTh:Vh 7→ Vh (�e) by

Th=L−1
e,hEhLh

The operatorTh preserves theH(div)–inner product in the sense that

3e(Thu,y) = 3(u,Rhy) for all u ∈ Vh,y ∈ Vh (�e) (4.11)

This follows since

3e(Thu,y) = (Le,hThu,y)e = (EhLhu,y)e
= (Lhu,Rhy) =L (u,Rhy).

Furthermore, ifu ∈ Vh it follows from (4.11) and the Cauchy–Schwarz inequality that

3e(Thu,Thu) = 3(u,RhThu) ≤ 3(u, u)1/23(RhThu,RhThu)1/2

≤ 3(u, u)1/23e(Thu,Thu)1/2

or
3e(Thu,Thu) ≤ 3(u, u) for all u ∈ Vh (4.12)

The following result shows thatL−1
e,h can be used to construct a uniform preconditioner for

Lh.

Lemma 4.5. The operatorRhL−1
e,hEh is spectrally equivalent toL−1

h in the sense that

β−23(y,y) ≤ 3((RhL−1
e,hEh) Lhy,y) ≤ 3(y,y) for all y ∈ Vh.

The constantβ is from estimate (4.10).

Proof
This result is just a special case of ‘the fictitious space lemma’ given in Nepomnyaschikh
[26]. However, for completeness we outline the proof in the present setting. The right
inequality above follows since

3((RhL−1
e,hEh) Lhy,y) = 3(RhThy,y) = 3e(Thy,Thy) ≤ 3(y,y)

where we have used (4.11) and (4.12).
The left inequality follows from the identity

3(y,y) = 3(y,Rh ỹ) = 3e(Thy, ỹ),

whereỹ ∈ V⊥
0,h is the extension ofy defined by (4.9). Therefore, by (4.10), (4.11) and the
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Cauchy–Schwarz inequality

3(y,y) ≤ 3e(Thy,Thy)1/23e(ỹ, ỹ)1/2

≤ β3e(Thy,Thy)1/23(y,y)1/2

= β3((RhL−1
e,hEh) Lhy,y)

1/23(y,y)1/2.

This completes the proof.

The lemma above shows thatL−1
e,h can be used to construct a uniform preconditioner for

Lh. However, it is clear that it suffices to use a preconditionerQe,h instead ofLe,h.
Assume thatQe,h:Vh (�e) 7→Vh (�e) is L2–symmetric and spectrally equivalent to

L−1
e,h, i.e.

c1(L
−1
e,hy,y) ≤ (Qe,hy,y) ≤ c2(L

−1
e,hy,y) for all y ∈ Vh (�e) (4.13)

where the positive constantsc1 andc2 are independent ofh. Define an operatorQh:Vh 7→ Vh
by

Qh = RhQe,hEh (4.14)

Observe thatQh isL2–symmetric since

(Qhu,y) = (Qe,hEhu,Ehy)e = (u,Qhy) for all u,y ∈ Vh

The following theorem is the main result of this section.

Theorem 4.1. Assume that theL2–symmetric operatorQe,h:Vh (�e) 7→ Vh (�e) satis-
fies (4.13) and letQh: Vh 7→ Vh be defined by (4.14). Then the two quadratic forms

3(y,y) and 3(QhLhy,y)

are equivalent onVh, uniformly inh.

Proof
We observe that for anyy ∈ Vh

3(QhLhy,y) = (Qe,hEhLhy,EhLhy)

Furthermore, by (4.13) this quadratic form is equivalent, uniformly inh, to the quadratic
form

(L−1
e,hEhLhy,EhLhy) = 3((RhL−1

e,hEh) Lhy,y),

and by Lemma 4.5 this form is equivalent to3(y,y).

Hence we have demonstrated that a preconditionerQh, constructed from the extended
domain�e as indicated by (4.13) and (4.14), is spectrally equivalent toL−1

h . Therefore,
it follows from the discussion given in Section 3 above that a preconditioner@h for the
mixed system (2.4), derived from the Dirichlet problem (1.1), is naturally constructed by
the domain embedding approach.
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5. The non-conforming Crouzeix–Raviart method

The purpose of this section is to adopt the preconditioning strategy discussed above for
the mixed finite element method to an alternative discretization procedure which is not
directly based on the mixed weak formulation (2.2). More precisely, we shall analyse the
non-conforming Crouzeix–Raviart method (cf. [12] or Chapter 8 [8]). We will show that
this system can be interpreted as a nonconforming mixed system. Furthermore, the obtained
saddle point problem will be preconditioned by utilizing a preconditioner of the form studied
in Section 4 above, on the lowest order Raviart–Thomas space, combined with the the
auxiliary space method(cf. Xu [37]). Hence, since we have established above that the
preconditioners studied in Section 4 can be naturally constructed by domain embedding,
this shows, implicitly, that also the Crouzeix–Raviart system can be preconditioned by
domain embedding.

Hence, the idea is to reformulate the positive definite Crouzeix–Raviart system as a saddle
point problem, precondition the saddle point problem and then solve the preconditioned
system by an iterative method for saddle point problems. This is in contrast to the more
common approach where saddle point problems are reduced to positive definite problems
in order to apply standard iterative techniques like the conjugate gradient method.

5.1. The non-conforming method as a mixed system

As above, let{7h}h∈(0,1] be a quasi-uniform family of triangulations of�. Furthermore,%h
is the set of edges in7h and for eachE ∈ %h, xE is the midpoint of the edge. Throughout
this section we let

W0
h = {w : w ∈ P1(T ) ∀T ∈ 7h, w is continuous atxE ∀E ∈ %h}

Here the continuity requirement at the boundary should be interpreted such thatw(xE) = 0
for all boundary edgesE.

We consider approximations of the Dirichlet problem (1.1) with homogeneous boundary
conditions. The discrete solutions are determined by:

Findph ∈ W0
h such that

∑
T ∈7h

∫
T

(a grad ph) · (grad qh) dx = (f, q) for all q ∈ W0
h (5.1)

For simplicity we will assume throughout this section that the coefficient matrixa is
piecewise constant with respect to the triangulation7h for all h ∈ (0, 1]. (Otherwise, just
replacea by its average on each triangle in the discussion below.) LetV0

h denote the space of
discontinuous piecewise constant 2–vectorfields with respect to the triangulation7h. Define
an operatorgradh : W0

h 7→V0
h by taking the gradient elementwise, i.e.,(gradhq)|T =

grad(q|T ). Then the equation (5.1) can be equivalently written as

(agradhph, gradhq) = (f, q) for all q ∈ W0
h

We also define a discrete divergence operator divh : V0
h 7→ W0

h by duality, i.e.,

(divh y, q) = −(y, gradhq) for all q ∈ W0
h
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A more explicit characterization of the operator divh can be derived from the fact that
div(y |T ) = 0 for anyy ∈ V0

h. For eachE ∈ %h let n be chosen unit normal vector. If
y ∈ V0

h then [y · n]E will denote the jump ofy in this direction. Then we have

(divh y, q) =
∑
E∈%0,h

|E| q(xE) [y · n]E for all q ∈ W0
h (5.2)

where%0,h denotes the set of interior edges and|E| is the length ofE.
If ph ∈ W0

h is the solution of 5.1 we let the discrete fluxuh ∈ V0
h be given by∫

�

a−1 uh · y dx =
∫
�

gradhph· y dx for all y ∈ V0
h

The two unknownsuh andph can now be determined as the unique solution(uh, ph) ∈ V0
h

×W0
h of the saddle point problem

(a−1 uh,y)− (gradhph,y) = 0, for all y ∈ V0
h,

(divh uh, q) = −(f, q), for all q ∈ W0
h .

(5.3)

We note that, under the assumption that the coefficient matrixa is piecewise constant, the
system (5.3) is exactly equivalent to the original system (5.1).

We observe that the system (5.3) can be given the operator form:

!h

(
uh
ph

)
=
(

0
Fh

)

where the coefficient operator,!h : Xh 7→ Xh, is given by

!h =
(
a−1 I −gradh
divh 0

)

HereXh = V0
h ×W0

h .
If y ∈ V0

h we define a mesh dependent ‘H(div)–norm’ by

|| y ||2div,h = || y ||20 + ||divh y ||20
Furthermore, in analogy with the notation above for the standard mixed method, we let

3h(u,y) = (u,y)+ (divh u, divh y)

be the corresponding inner product.

Lemma 5.1. For eachq ∈ W0
h there is ay ∈ V0

h such that

divh y = q and || y ||div,h ≤ c||q||0
where the constantc is independent ofq andh.
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Proof
We first recall that the functions inw ∈ W0

h satisfy a discrete Poincaré inequality of the
form

||w||0 ≤ c||gradhw||0 (5.4)

wherec is independent ofw andh. A proof of this fact can for example be found in [1] (cf.
Lemma 5.3 of [1]). For a givenq ∈ W0

h let φ ∈ W0
h be uniquely determined by

(gradhφ, gradhw) = −(q,w) for all w ∈ W0
h (5.5)

and lety= gradhφ ∈V0
h. By construction divh y= q. Furthermore, 5.4 and (5.5) imply

that
|| y ||20 ≤ ||q||0||φ||0 ≤ c||q||0|| y ||0

and hence the desired bound on|| y ||div,h is established.

It is a direct consequence of Lemma 5.1 that a Babuška–Brezzi condition of the form

inf
q∈W0

h

sup
y∈V0

h

(divh y, q)

|| y ||div,h||q||0 ≥ α > 0

holds, whereα is independent ofh. Therefore, if we let

||(y, q)||2Xh = || y ||2div,h + ||q||20
and, if the dual norm||(y, q))||X∗

h
onXh is defined byL2–duality, we immediately obtain

that the operator norms

||!h||+(Xh,X∗
h
) and ||!−1

h ||+(X∗
h
,Xh) are bounded uniformly inh (5.6)

Hence, the properties of the operator!h correspond to similar properties for the coefficient
operator of the standard mixed method studied above (cf. 2.8). By arguing exactly as we
did above we therefore conclude that if@h : Xh 7→ Xh is a positive definite operator such
that

||@h||+(X∗
h
,Xh) and ||@−1

h ||+(Xh,X∗
h
) are bounded uniformly inh (5.7)

then the condition number of the operator@h!h is bounded uniformly inh.
Let L0

h:V
0
h 7→ V0

h be defined by

(L0
hu,y) = 3h(u,y) for all u, y ∈ V0

h

This operator isL2–symmetric and positive definite. Furthermore, assume thatQ0
h:V

0
h 7→

V0
h is a uniform preconditioner forL0

h, and thatIh : W0
h 7→ W0

h is spectrally equivalent to
the identity. If@h : Xh 7→ Xh is the block diagonal operator

@h =
(

Q0
h 0

0 Ih

)

then this operator satisfies the mapping property (5.7). Hence, the construction of a precon-
ditioner@h is essentially reduced to the problem of constructing an effective preconditioner
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Q0
h for L0

h. Such a preconditioner will be constructed below by the auxiliary space method.
The operatorIh is introduced as a replacement for the identity operator, in order to avoid
the inversion of a ‘mass–matrix’.

5.2. The auxiliary space technique

Let the spacesV0
h andW0

h be as above, i.e.,V0
h is the space of discontinuous piecewise

constant vectors andW0
h is the non-conforming Crouzeix–Raviart space. Furthermore,Vh ⊂

H(div;�) will denote the corresponding lowest order Raviart–Thomas space as described
in Section 4 above, i.e. the parameterr = 0, andWh the corresponding space for the mixed
method consists of piecewise constants.

In the auxiliary space method the main tool for constructing a preconditionerQ0
h:V

0
h 7→

V0
h for the operatorL0

h is a corresponding preconditionerQh for the operatorLh defined
on the auxiliary spaceVh. Here we recall thatLh:Vh 7→Vh is defined by

3(u,y) = (Lhu,y) for all u,y ∈ Vh

where3(·, ·) is theH(div)–inner product. The preconditionerQh:Vh 7→ Vh is assumed
to be a uniform preconditioner forLh, i.e., the bilinear forms

3(y,y) and 3(QhLhy,y)

are equivalent onVh, uniformly inh. Since the operatorsLh andL0
h are finite element ap-

proximations of the same differential operatorL, preconditioners for these operators must
be related. This observation is utilized in the construction of the auxiliary space precondi-
tioners. Furthermore, in the present setting it is crucial that the subspaces of divergence free
vector fields inVh andV0

h coincide.
In the rest of this section we assume thatQhy can be effectively evaluated from a given

inner product representation ofy, i.e. from the data(y,fj ), where{fj } is a nodal basis

for Vh. Let Ph:Vh 7→V0
h be theL2–projection. Note that this operator is local, sinceV0

h is
a space of discontinous functions. Furthermore, letP∗

h:V
0
h 7→Vh be theL2–dual operator,

i.e.,P∗
h is theL2–projection ontoVh.

The auxiliary space preconditionerQ0
h:V

0
h 7→V0

h is of the form

Q0
h= τh2 I + PhQhP∗

h (5.8)

whereτ is a positive constant independent ofh. Let us first remark that this operator is
computationally feasible. This just follows from the assumption onQh together with the
fact thatPh is local. In order to use the theory developed in [37] we need to verify that the
projectionPh is stable and accurate in the sense that

3h(Phy,Phy) ≤ c3(y,y) forall y∈Vh (5.9)

and
||(I − Ph) y ||0 ≤ ch||div y ||0 forall y∈Vh (5.10)

for a suitable constantc independent ofh. Furthermore, we need to construct an operator
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Ph:V0
h 7→ Vh such that

3(Phw,Phw) ≤ c3h(w,w) for all w ∈ V0
h (5.11)

and
||(I − Ph) w ||0 ≤ ch||divh w ||0 for all w ∈ V0

h (5.12)

where againc is independent ofh. The operatorPh is only needed for the analysis.
In the present setting we definePh:V0

h 7→ Vh by averaging the normal components on
each edge, i.e.

(Phw · n)E = 1

2
((w · n)E− + (w · n)E+) for all E ∈ %h

This will uniquely determinePhw ∈ Vh.

Lemma 5.2. The operatorsPh andPh defined above satisfy the properties (5.9)–(5.12).

We will delay the verification of these properties. However, the following theorem now
follows more or less directly from [37].

Theorem 5.1. Let Q0
h:V

0
h 7→ V0

h be defined by (5.8). IfQh is a uniform preconditioner

for Lh thenQ0
h is a uniform preconditioner forL0

h.

Proof
For completeness we outline a proof in the present setting. We need to show that the bilinear
forms

3h(w,w) and 3h(Q
0
hL0

hw,w)

are uniformly equivalent onV0
h. We have

3h(w,w) = ((I − Ph) w +(I − Ph) Phw,L
0
hw)+ (Phw,P

∗
hL0

hw)

The first inner product on the right hand side is estimated by

(||(I − Ph) w ||0 + ||(I − Ph) Phw ||0)|| L0
hw ||0 ≤ ch3h(w,w)1/2|| L0

hw ||0
where we have used the properties (5.10)–(5.12). By the Cauchy–Schwarz inequality, (5.11)
and the assumption onQh we also have

(Phw,P
∗
hL0

hw) ≤ 3(Phw,Phw)1/2(L
−1
h P∗

hL0
hw,P

∗
hL0

hw)
1/2

≤ c3h(w,w)1/23h(PhQhP∗
hL0

hw,w)
1/2

However these bounds imply that

3h(w,w) ≤ c3h(Q
0
hL0

hw,w) for all w ∈ V0
h

From (5.2) it follows that the spectral radius ofL0
h is 2(h−2). Therefore,

3h(h
2 L0

hw,w) = h2|| L0
hw ||20 ≤ c3h(w,w) (5.13)
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This is the first part of the desired lower bound for3h(w,w). In order to complete the
argument note that (5.9) and the Cauchy–Schwarz inequality imply that

3h((PhL−1
h P∗

h) L0
hw,w) ≤ 3h((PhL−1

h P∗
h) L0

hw, (PhL−1
h P∗

h) L0
hw)

1/23h(w,w)1/2

≤ c3(L−1
h P∗

hL0
hw,L

−1
h P∗

hL0
hw)

1/23h(w,w)1/2

= c3h((PhL−1
h P∗

h) L0
hw,w)

1/23h(w,w)1/2

Together with (5.13) and the assumptions onQh this implies the desired lower bound

3h(Q
0
hL0

hw,w) ≤ c3h(w,w) for all w ∈ V0
h

and this completes the proof of the theorem.

5.3. Proof of Lemma 5.2

In order to complete the analysis of the auxiliary space preconditioner (5.8) we have to
establish the properties (5.9)–(5.12) for the operatorsPh andPh.

We first note that (5.9) holds withc = 1. The follows from the identity

(div y, q) = −(y, gradhq) = (divh(Phy), q) for all y ∈ Vh, q ∈ W0
h (5.14)

To see this identity note that fory ∈ Vh, (y · n)|E is constant on the edges. This implies
that ∫

E

(y · n)[q] ds = |E|(y · n)(xE)[q](xE) = 0 for all y ∈ Vh, q ∈ W0
h

wherexE is the midpoint ofE. This leads directly to (5.14).
Property (5.10) is straightforward. Since theL2–projection ontoV0

h is local, we have
(lettingy = (v1, v2)),

||(I − Ph) y ||0 ≤ ch(
∑
T ∈7h

||grad v1||20,T + ||grad v2||20,T )1/2

However, ify ∈ Vh then

||grad v1||20,T + ||grad v2||20,T = 1

2
||div y ||20,T

Therefore, (5.10) is established.
We next verify (5.12). LetV1

h be the discontinuous Raviart–Thomas space, i.e.V1
h has

the same degrees of freedom asV0
h on each triangle, but the continuity requirements have

been removed. Hence,Vh,V0
h ⊂ V1

h. If z ∈ V1
h then the forms

|| z ||20 and h2
∑
E∈%h

(
(z · n)2E− + (z · n)2E+

)
(5.15)

are uniformly equivalent with respect toh. From the definiton of the operatorPhwe therefore
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obtain

||(I − Ph) w ||20 ≤ ch2

(∑
E∈%h

[w · n]2E

)
≤ ch2||divh w ||20

which is (5.12).
Finally, we show that (5.11). It follows directly from (5.15) thatPh is uniformly bounded

in L2. In order to bound‖div Phw ‖0 for w ∈ V0
h we note that it follows from a standard

inverse inequality that

‖div Phw ‖2
0 =

∑
T ∈7h

‖div(Phw − w)‖2
0, T

≤ ch−2
∑
T ∈7h

‖(Phw − w)‖2
0, T ≤ ch−2‖ Phw − w ‖2

0.

Here, we have used the fact thatw is a constant vector on each triangle. However, together
with (5.12) this implies the desired estimate (5.11).

6. Numerical experiments

In this section we shall report on some numerical experiments using the various precon-
ditioners discussed above. The extended domain,�e, will always be taken to be the unit
square. The domain� is either equal to�e, i.e. there is no effect of domain embedding, or
� is equal to the L–shaped domain obtained from�e by removing the upper right 1/2×1/2
square. The triangulation of�e is constructed by dividing the unit square intoh× h sized
squares, and then dividing each square into two triangles by using the negative sloped diag-
onal. In all the examples belowVh andVh (�e) will be the lowest order Raviart–Thomas
spaces.

6.1. Example

We first consider preconditioners for the operatorLh:Vh 7→ Vh. Hence, we consider
approximations of the boundary value problem (3.2)–(3.3). In the experiment we have
takenf = (1, 1)T. We investigate the behavior of the preconditionerQh defined by (4.14),
i.e.,

Qh = RhQe,hEh

The operatorQe,h is a multigrid V–cycle operator with an additive smoother of the form
described in [3], where the scaling factor,η, is taken to be 1/2.

The condition numbersκ(QhLh) are estimated from the conjugate gradient iterations.
The results are given in Table 1. Of course, the first column of these results just confirms
the theory developed in [3], while the second column seems to agree with the result of
Theorem 4.1, i.e., the condition numbersκ(QhLh) appear to be bounded uniformly inh.

6.2. Example

In the next example we consider the mixed method for the problem (1.1), with the coefficient
a equal to the identity,f ≡ 1 andg ≡ 0. The discrete system (2.4) is preconditioned by an
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Table 1. Condition numbers for the preconditionedH(div)–operator

Domain Unit square L–shaped domain
1/h κ(QhLh) κ(QhLh)

32 2.40 5.36
64 2.44 5.66
128 2.46 5.90
256 2.46 6.09

Table 2. Condition numbers and the number of iterations for the mixed operator

Unit square L–shaped domain
Domain:

1/h κ(@h!h) MINRES κ(@h!h) MINRES

32 2.33 14 5.31 21
64 2.35 14 5.62 21
128 2.34 14 5.86 22
256 2.34 14 6.05 22

operator@h of the form 3.4, i.e.,

@h =
(

Qh 0
0 I

)
: Vh ×Wh 7→ Vh ×Wh

HereWh is the space of piecewise constants and theH(div)–preconditionerQh is chosen
exactly as in the previous example above. In Table 2 we present the results of this experi-
ment. In addition to the estimates for the condition numbers,κ(@h!h), we also report the
number of iterations required by the minimum residual method to reduce the residual of the
preconditioned system by a factor 10−5 in the norm induced by the inner product(@−1

h ·, ·).
As expected, the results appear to be bounded, independently ofh.

6.3. Example

Finally, we consider the nonconforming method studied in Section 5, i.e., the system (5.1).
This system is formulated as a saddle point problem, cf. (5.3), and is preconditioned by a
block diagonal operator

@h =
(

Q0
h 0

0 Ih

)
: V0

h ×W0
h 7→ V0

h × W0
h

We recall thatV0
h is the space of piecewise constant vectors, whileW0

h is the piecewise

linear Crouzeix–Raviart space. Here the preconditionerQ0
h:V

0
h 7→ V0

h is the auxiliary
space preconditioner given by (5.8), i.e.,

Q0
h= τh2 I + PhQhP∗

h
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Table 3. Condition numbers and the number of iterations for the non-conforming operator

Unit square L–shaped domain
Domain:

1/h κ(@h!h) MINRES κ(@h!h) MINRES

32 2.79 25 5.30 32
64 2.79 24 5.61 34
128 2.79 24 5.86 34
256 2.78 22 5.85 34

In the experiments we have chosenτ = 0.01 andQh:Vh 7→ Vh exactly as in the two
previous examples. The operatorIh onW0

h is obtained from the identity operator by replacing
exact integration by the simplest numerical integration rule based on the values at the
midpoint of each edge. In the same way as the above the iterations are terminated when the
proper residual is reduced by a factor of 10−5. The results are given in Table 3. Since the
condition numbers appear to be bounded, independently ofh, this confirms, indirectly, the
conclusion of Theorem 5.1

If the parameterτ is increased from 0.01 to 0.05 the condition numbers seem to increase
by a factor of at most 3/2, and usually much less. Hence, the performance of the iterative
solvers is not too sensitive with respect to perturbations inτ . Furthermore, it seems from
the experiments that a suitable chice ofτ can be made independent of the mesh parameter
h.
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